时间:2022-10-26 11:14
牛顿第二运动定律的常见表述是物体加速度的大小跟作用力成正比,跟物体的质量成反比,且与物体质量的倒数成正比;加速度的方向跟作用力的方向相同。
牛顿第二运动定律只适用于质点。对质点系,用牛顿第二运动定律时一般采用隔离法,或者采用质点系牛顿第二定律。
牛顿第二运动定律只适用于惯性参考系。惯性参考系是指牛顿运动定律成立的参考系,在非惯性参考系中牛顿第二运动定律不适用。但是,通过惯性力的引入。可以使牛顿第二运动定律的表示形式在非惯性系中使用。
牛顿第二运动定律只适用宏观问题。解决微观问题必须使用量子力学。当考察物体的运动线度可以和该物体的德布罗意波相比拟时,由于粒子运动不确定性关系式(即无法同时准确测定粒子运动的方向与速度),物体的动量和位置已经是不能同时准确获知的量了,因而牛顿动力学方程缺少准确的初始条件无法求解。也就是说经典的描述方法由于粒子运动不确定性关系式已经失效或者需要修改。量子力学用希尔伯特空间中的态矢概念代替位置和动量(或速度)的概念(即波函数)来描述物体的状态,用薛定谔方程代替牛顿动力学方程(即含有力场具体形式的牛顿第二运动定律)。用态矢代替位置和动量的原因是由于测不准原理我们无法同时知道位置和动量的准确信息,但是我们可以知道位置和动量的概率分布,测不准原理对测量精度的限制就在于两者的概率分布上有一个确定的关系。
牛顿第二运动定律只适用低速问题。解决高速问题必须使用相对论。由于牛顿动力学方程不是洛伦兹协变的,因而不能和狭义相对论相容,因此当物体做高速移动时需要修改力、速度等力学变量的定义,使动力学方程能够满足洛伦兹协变的要求,在物理预言上也会随速度接近光速而与经典力学有不同。
应用牛顿第二运动定律可以解决一部分动力学问题。问题主要有两类:第一类问题已知质点的质量和运动状态,已知质点的在任意时刻的位置即运动方程或速度表达式或加速度表达式,求作用在物体上的力,一般是将已知的运动方程对时间求二阶导数或将速度方程对时间求一阶导数,求出加速度,再根据牛顿第二定理求出未知力;第二类问题已知质点的质量及作用在质点上的力,求质点的运动状态,即求运动方程、速度表达式或加速度表达式,通常是由牛顿第二运动定律列出方程,求出物体的加速度表达式,由加速度和初始条件,定积分求出速度表达式,由速度表达式和初始条件,定积分求出运动方程。解题方法主要有四种:临界条件法、正交分解法、合成法、程序法。
运用牛顿第二定律及同一直线矢量合成方法,根据理想“平行导轨模型”的物理特点,基于电磁感应规律,对电磁感应中的电容负载平行导轨模型的各种情况进行计算,可计算出各种情况下的金属导杆运动的数学表达式;结果与实践吻合。
动画是让画面运动起来的影视艺术,即运动的画面。牛顿第二运动定律在动画艺术中占有重要的位置,是动画中必不可少的研究对象。