时间:2022-10-16 00:21
高等数学是某些自考专业的重要课程,而高数及格率又是所有科目中及格率最低的几门之一,自考满分100分,合格分数为60分,以下是小编给大家整理的重点知识内容:
(一)不定积分
1.知识范围
(1)不定积分 原函数与不定积分的定义 原函数存在定理 不定积分的性质
(2)基本积分公式
(3)换元积分法,第一换元法(凑微分法) 第二换元法
(4)分部积分法
(5)一些简单有理函数的积分
2.要求
(1)理解原函数与不定积分的概念及其关系,掌握不定积分的性质,了解原函数存在定理。
(2)熟练掌握不定积分的基本公式。
(3)熟练掌握不定积分第一换元法,掌握第二换元法(限于三角代换与简单的根式代换)。
(4)熟练掌握不定积分的分部积分法。
(5)会求简单有理函数的不定积分。
(二)定积分
1.知识范围
(1)定积分的概念,定积分的定义及其几何意义 可积条件
(2)定积分的性质
(3)定积分的计算 变上限积分 牛顿—莱布尼茨(Newton-Leibniz)公式 换元积分法 分部积分法
(4)无穷区间的广义积分
(5)定积分的应用 平面图形的面积 旋转体体积 物体沿直线运动时变力所作的功
2.要求
(1)理解定积分的概念及其几何意义,了解函数可积的条件。
(2)掌握定积分的基本性质。
(3)理解变上限积分是变上限的函数,掌握对变上限定积分求导数的方法。
(4)熟练掌握牛顿—莱布尼茨公式。
(5)掌握定积分的换元积分法与分部积分法。
(6)理解无穷区间的广义积分的概念,掌握其计算方法。
(7)掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体体积。
1、一般数列的通项an与前n项和Sn的关系:an=
2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当
d≠0时,an是关于n的一次式;当d=0时,an是一个常数。
3、等差数列的前n项和公式:Sn=
Sn=
Sn=
当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。
4、等比数列的通项公式: an= a1qn-1an= akqn-k
(其中a1为首项、ak为已知的第k项,an≠0)
5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);
当q≠1时,Sn=
Sn=
把握高数考纲:自考高数,首当其冲的应该是从全局上把握高数考纲的全部内容,理清楚各章节的关联之处,在错综复杂的考点之间找到突破口,这个非常非常重要。正所谓,数学是一环套着一环。一旦突破口被攻下来,那其余的应该也会接连掉进我们的口袋里。
背诵导数公式:高数,无论是理工类还是经管类,都可以称作微积分。从名字上顾名思义,搞定微分和积分,这本书也就学得差不多了。所以各位自考生可以先熟练背诵导数公式,这里的熟练指的是双边。