时间:2022-03-09 01:15
对称轴:关于直线x=(π/2)+kπ,k∈Z对称。正弦函数是三角函数的一种。正弦函数是数学中的概念,而数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。
正弦函数基本性质
1、定义域
实数集R,可扩展到复数集C
2、值域
[-1.1](正弦函数有界性的体现)
最值和零点
①最大值:当x=2kπ+(π/2),k∈Z时,y(max)=1
②最小值:当x=2kπ+(3π/2),k∈Z时,y(min)=-1
零值点:(kπ,0),k∈Z
3、对称性
1)对称轴:关于直线x=(π/2)+kπ,k∈Z对称
2)中心对称:关于点(kπ,0),k∈Z对称
4、周期性
最小正周期:2π
5、单调性
在[-(π/2)+2kπ,(π/2)+2kπ],k∈Z上是增函数
在[(π/2)+2kπ,(3π/2)+2kπ],k∈Z上是减函数
6、奇偶性
奇函数(其图象关于原点对称)