高中数学常考重点知识点总结 高中数学常考重点知识点介绍

时间:2022-12-07 01:37

导读:高中数学常考重点知识点总结?下面小编为大家整理介绍。1、基本初等函数正弦函数 sinθ=y/r余弦函数 cosθ=x/r正切函数 tanθ=y/x余切函数 cotθ=x

高中数学常考重点知识点总结 高中数学常考重点知识点介绍

1、基本初等函数

正弦函数 sinθ=y/r

余弦函数 cosθ=x/r

正切函数 tanθ=y/x

余切函数 cotθ=x/y

正割函数 secθ=r/x

余割函数 cscθ=r/y

2、同角三角函数间的平方关系:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

3、同角三角函数间积的关系:

sinα=tanα*cosα

cosα=cotα*sinα

tanα=sinα*secα

cotα=cosα*cscα

secα=tanα*cscα

cscα=secα*cotα

4、同角三角函数间倒数关系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

5、利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。

反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,

(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间)。

(2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间)。

(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。

6、求函数的极值:

设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的极小值(或极大值)。

可导函数的极值,可通过研究函数的单调性求得,基本步骤是:

(1)确定函数f(x)的定义域。

(2)求导数f(x)。

(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的变化情况。

(4)检查f(x)的符号并由表格判断极值。

7、求函数的值与最小值:

如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的值。函数在定义域内的极值不一定,但在定义域内的最值是的。

求函数f(x)在区间[a,b]上的值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值。

(2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的值与最小值。

8、解决不等式的有关问题:

(1)不等式恒成立问题(绝对不等式问题)可考虑值域。

f(x)(xA)的值域是[a,b]时,

不等式f(x)0恒成立的充要条件是f(x)max0,即b0;

不等式f(x)0恒成立的充要条件是f(x)min0,即a0。

f(x)(xA)的值域是(a,b)时,

不等式f(x)0恒成立的充要条件是b0;不等式f(x)0恒成立的充要条件是a0。

(2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0。

9、奇偶性定义:

一般地,对于函数f(x)

(1)如果对于函数定义域内的任意一个x,都有f(—x)=—f(x),那么函数f(x)就叫做奇函数。

(2)如果对于函数定义域内的任意一个x,都有f(—x)=f(x),那么函数f(x)就叫做偶函数。

(3)如果对于函数定义域内的任意一个x,f(—x)=—f(x)与f(—x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

10、有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘。

(2)任何数同零相乘都得零。

(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。

标签:
随便看看
本类推荐
本类排行
热门标签

我国国家通讯社行不行啊细狗新年贺词祝福语2023年祝福语新年新年贺词新年贺词祝福语居家抗病毒小药箱除夕高速免费吗2022年除夕高速免费吗春联春联句子大全春联句子大全七字年夜饭十二道菜年夜饭十二道菜单年夜饭吃什么年夜饭吃什么菜吃年夜饭的寓意年夜饭黑芝麻菊花茶晒菊花茶腌腊肉送妈妈生日礼物汉白玉送闺蜜水钻送女人礼物爸爸生日送礼物送老公